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Abstracl. The LangerSchwartz model of nucleation and growth has been extended to 
include the presence of dislocations. The increased nucleation rate of precipitates lying on 
dislocations, thegrowth rateof these ellipsoidal precipitates and the effectsot heterogeneous 
site sahlration have been included in the model. It isshown that the presence of dislocations 
can have a large effect on the overall phase Separation kinetics at low initial supersaturations, 
but it is concluded that heterogenous nucleation cannot account for the observed dis- 
crepancies between the Langer-Schwartz theory and previously reported data on the Al- 
Zn system. 

1. Introduction 

The classical theory of nucleation, as elucidated by Gibbs [l] and Becker and Doring [2] 
predicts the rate of formation of stable embryos (droplets of an emerging phase) as a 
functionofthe degreeof supersaturation in an initially homogeneousmetastablesystem. 
For most systems, the nucleation rate predicted by the classical theory of nucleation 
varies from extremely low values to very large values through a narrow range of super- 
saturation, thus effectively defining the onset of nucleation. A number of experiments 
have been performed to measure this onset of nucleation and separation of phases in 
a supersaturated solution near its critical concentration. Unfortunately, most of the 
measurements have indicated dramatic differences between theory and experiment. 

In 1962, Sundquist and Oriani [3] observed that in pertluoromethylcyclohexane plus 
methylcyclohexane liquid mixtures, the cloud point appeared at temperatures far below 
those predicted by the classical theory. This was confirmed by Heady and Cahn [4] who 
argued that the discrepancies observed by Sundquist and Oriani and themselves could 
not be explained by competing effects of heterogeneous nucleation. In 1974, Huang et 
a1 [5] tested the classical theory of nucleation of bubbles in liquid COz. They observed 
that COz appeared ‘supercooled’ in the same liquid state at temperatures well below 
those predicted by the classical theory. The experiment was performed at constant 
density rather than the usual constant pressure, thus the supercooled liquid refers to the 
absence of vapour bubbles. Similar experiments on other binary mixtures (2-6-lutidine 
plus water [6], cyclohexane plus methanol [7] and isobutyric acid plus water [8]) near the 
critical point drew the same conclusions: the classical theory is not even approximately 
correct in predicting the onset of nucleation. 
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It was Binder and Stauffer [9] who first recognized that the source of discrepancies 
lay in the experiments which consisted of measurements of the cloud point, that is the 
temperature at which nucleation first becomes profuse. Cloud point measurements 
essentially determine b e  effects of both nucleation rate and growth rate of droplets. 
The nucleation of stable embryos and the growth of existing droplets both compete for 
the available supersabrated solute and, since the nucleation rate is a very strong 
function of supersaturation, the inclusion of a growth rate term in the kinetic theory can 
significantly affect the predicted number of droplets formed. 

'In the tight of this,'Binder and Stauffer argued that the experimentally meaningful 
quantity is not the nucleation rate alone but the time required for the supersaturation 
to go to zero, which &plies that, in addition to the nucleation rate, the droplet growth 
too should be taken into consideration. Using these ideas, Langer and Schwartz (U) 
[IO] derived a set ofcoupled differential equationswhich describe the decrease with time 
of supersaturation and increase with time of the average droplet 'size in a homogeneous 
system. The LS results show that, for small initial supersaturation, the inclusion of the 
growth rate leads to a much longer completion time for the phase transition reaction 
than that predicted by 'the classical theory. 

The kinetics of phase separation in solids are much slower and thus nucleation rate 
measurements can be made more accurately than in liquids. One can thus avoid cloud 
point determinations which are essentially studies of 'completion time'. It should be 
noted however that separately measuringnucleation andgrowth ratesinsolidsisdifkult 
in that the nuclei do npt become detectable until they have grown to a sufficient size. 
The first attempt to study the nucleation phenomenon in solids was made by Servi and 
Tqbull[ l l ] .  They investigated homogeneous nucleation kinetics in FIX Cu-rich Cu- 
CO alloys usingresistivity measurements. The same system was studied again in 1984 by 
LeGoues and Aaronson [12] who employed transmission electron microscopy. These 
studies showed agreement within an order of magnitude of the classical nucleation rate 
but did not attempt to measure changes in supersaturation as a function of time. 

In,1984, Simon el U! [I31 performed nucleation experiments on dilute AI-Zn alloys 
a d ,  aqdysed the small-angle x-ray scattering data in terms of the LS model. Their results 
showed some discrepancies with the LS model, including one data point whichseemed 
to confirm the classical theory without inclusion of the growth rate. 

Animportanteffect concerningnucleation andgrowthwhich ariseswhenconsidering 
alloy systems and a possible explanation for'the differences between the results of Simon 
et ai and the LS prediction is the presence of heterogeneous nucleation sites such as 
dislocations. It is widely known that nucleation occurspreferentiafly ondislocationsdue 
to release of the elastic energy associated with the line defect and reduction of the total 
interfacial free energy required. A theoretical treatment of nucleation on dislocations 
has been presented by Cahn [14]. He assumed that the elastic energy of the dislocation 
enclosed in the volume of the embryo was released and predicted the existence of 
metastable cylindrical embryos surrounding all dislocations in supersaturated systems. 
Lyubov and Solovyev [14] extended a n ' s  treatment for coherent nuclei and suggested 
that the catalytic effect of dislocations was due to the presence of solute atmospheres 
which reduced the amount of solute required by the second phase. Aaronson et ai 
[I61 clarified this point by explaining that the formation of Cottrell atmospheres is a 
consequence of the tendency to equilibrate the chemical potential of the solute atoms 
in the system and therefore the actual driving force energyfor nucleation is not affected; 
it was further pointed out that the nucleation process occurs faster because of more rapid 
transport of the solute to the developing embryos. Dollins [17] presented a treatment 
for nuclei forming not on a dislocation tine but on the surroundings. 
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Owing to this catalytic effect of dislocations, one would, therefore, expect the 
supersaturation to decrease more rapidly with time in the presence of dislocations than 
it would in a homogeneous system. 

The purpose of this work is to extend the m model to the case where nuclei are 
forming on both dislocations and the bulk material and examine the effects, if any, on 
the m results of preferred nucleation at dislocations. In addition, the results of the 
present investigation will allow us to decide whether the discrepancies between the Al- 
Zn data of Simon et a1 and the LS model are due to the presence of dislocations. 

In the extensionof themmodel, anumber ofrather drasticand inelegant assumptions 
shall be made. Perhaps the most drastic one concerns the nature of the nucleus located 
at the dislocations and in the bulk. For a heterogeneous nucleation catalytic effect to 
take place, an incoherent particle must be assumed. An incoherent particle is one whose 
interface with the matrix has a different atomic configuration than that of either of the 
phases. Incoherent homogeneous nucleation, however, has not been observed in any 
alloy system. Nevertheless, inseveral alloy systems, such as AI-Zn, metastable coherent 
nucleation in the bulk competes with stable incoherent precipitation at heterogeneous 
sites. Thus, despite the above assumptions and subsequent simplications, it is hoped 
that the model at least qualitatively describes real alloy systems. 

2. The LangerSchwartz model 

The LangerSchwartz (LS) model [lo] is a statistical theory of nucleation and growth 
which describes the kinetics of unmixing of slightly supersaturated off-critical fluids. 
The four relevant quantities considered in the kinetics of nucleation and growth are 
supersaturation, droplet size, droplet density and time. Using concepts of scaling [MI, 
LS introduced four reduced parameters. The first is the supersaturation 

Y ( 0  = m x o  (2.1) 

~ ( i )  = 26C(O/(PAc) = (GO) - CA)/(CB - CA). (2.2) 

where 

The quantity P = f is the power-law exponent of the miscibility gap, C&) is the solute 
concentration of the matrix at time tand CA and CB are the equilibrium concentrations 
of the matrix and the second phase respectively. The tennxo appearing in equation (2.1) 
is defined as 

xo = 4 ( ~ f ~ / k T , ) ~ / ~  

where Cis thecorrelation length, otheinterfacialenergyand T, the critical temperature. 
The second scaled parameter defined by LS is the reduced time, which is given by 

r = (Dx$/24tz) t  (2.3) 
with D the diffusion coefficient. The third and fourth scaled variables are the mean 
droplet radius p and the number density n which are given by 

P = RXol25 n = 64i~(c /x~)~N.  (2.4) 
In equations (2.3) and (2.4), t ,  R and N are the real time, real size and real number 
density respectively. 
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The two differential equations which describe the time dependencies of all the 
relevant quantities in the phase separation reaction are 

(2.5) 

where a is a constant and yI is the initial value of the scaled supersaturation, y, = y ( z  = 

The term rp is equal to zero for R - R* > 4R* and equal to a constant for 
R - R < 1R*. The numerical value of this constant is found by comparing the long-time 
coarsening behaviour of these equations to the LifshitzSlyozov theory [19]. 

0). 

The nucleation rate J ( y )  appearing in equations (2.5) and (2.6) is given by 

J(y )=Ay2p(1  +y)3”exp(-l/y2) (2.7) 
whereA = 3. upointout that,formostsystems,xowillbeoftheorderofunityandthat 
theratio(x/xo)2 (or l/y2) isequal to the W*/kTterm foundinclassicalnucleation theory. 
It is worth noting that all the temperature-dependent quantities have disappeared in 
equations (2.5) and (2.6); that is, one should be able to map the behaviour observed at 
one temperature on that at another simply by rescaling lengths and times according to 
equations (2.3) and (2.4). 

3. Extension of the LangerScbwartz model 

It wasmentionedin the Introduction that nucleationoccurspreferentially ondislocations 
due to the release of elastic energy and the reduction of the total @terfacial.free energy 
required. Therefore, &addition to the second-phase particles growing homogeneously, 
the dislocation-nucleated particles too would contribute to the depletion of the sur- 
rounding supersaturated material. This contribution can be taken into account by simply 
adding a term in the conservation of solute condition given by LS as 

(6C(f =‘O) - SC(t))/(AC - 6C)  %n7i3N + Zd. 

Assuming that B 5 4, we have 

x1 - x = np3 f 62, 

for particles growing on the dislocations. 
It is the purpose of this section to find an expression for 2, and incorporate it in the 

LS equations. The three basic ingredients which go into the calculation of Z, are the 
nucleation rate on dislocations, the growth rate of the dislocation-nucleated nodules 
and the impingement of these nodules on each other. Section 3.1 uses Cahn’s treatment 
of nucleation on dislo$tions [14] to quantify the catalytic effect of the dislocations. An 
expression for nodule growth rate is derived in section 3.2 and in section 3.3 the volume 
fraction is evaluated after taking into account the mutual impingement of nodules. The 
final rate equations are presented in section 3.4. 

The calculation of Z, centres around the problem of impingement [ZO]. The u 
model was based on the implicit assumption that the probability of any small region 
transforming in a given time interval will be the same in all parts of the untransformed 
volume. Since the model deals with low initial supersaturations, the probability of 
nodules impinging upon each other is very low. In the presence of dislocations, however, 
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the situation is more complex. Dislocations exhibit a relative ease of nucleation and can 
get saturated easily due to a relatively fewer number of nucleation sites. Impingement 
therefore becomes a very likely event in the present case. 

The concept of extended line intercept [21] is used to calculate the total volume of 
nodules originating from a dislocation Line, assuming impingement only with other 
nodules nucleated on the same dislocation line. A random distribution of dislocation 
lines is then considered in order to allow for impingement of regions nucleated on 
different dislocation l ies .  In addition, an anisotropic growth rate is assumed for the 
nodules growing on the dislocations whose shape stays constant. 

3.1. Nucleation on dislocations 

The fist theoretical treatment of nucleation on dislocations was presented by Cahn [14] 
in 1957. He assumed that the nucleus lies along the dislocation and has a circular cross- 
section perpendicular to the dislocation line. The radius of the cross-section is not 
constant but varies with the distance along the line. In addition to the usual volume and 
surface-energy terms in the expression for the energy of formation of the nucleus of a 
given size, there is a term representing the strain energy of the dislocation in the region 
now occupied by the new phase. The work of formation per unit length of dislocation 
line is then 

Wd = -A log r + %ur - nfr’ 

where Wdis the free-energychange of formation of nucleus per unit length ofdislocation, 
A = Gb2/4z(1 - U) for edge dislocations and Gb2/4z for screw dislocations, G is the 
elastic shear modulus, b is the magnitude of Burgers vector, v the Poisson ratio, U the 
interfacial energy between the particle and the matrix and f the negative of the volume 
free energy of formation of the new phase. 

The energy of the whole nucleus can be obtained by integrating the above expression 
along the effective length of the nucleus. To find the nucleation rate, the combination 
of size and shape which gives the saddle-point energy change for the whole nucleus is 
required. Cahn solved this problem by applying appropriate boundary conditions; the 
critical nucleus is defined in terms of a maximum radius r ,  and a measure of its effective 
lengthl. Cahn’sresultsare expressedintermsoftheratioof thecritical workofformation 
ofa heterogeneousnucleustothe correspondingfreeenergyofahomogeneousspherical 
nucleus of critical size versus a parameter (Y deiined as 

(Y = 2Af/no2 

Typical values of A, f and ocorrespond to (Y values between 0.5 and 0.7. We take 
(Y = 0.6andrecoveravalue of02forthefraction W,* /wl. from Cahn’s work. Therefore, 
the scaled nucleation rate per unit length becomes 

Jd = A’(oX8/55)Y2/3(i + ~ X ~ ( ~ ~ . ~ / ~ ’ ) ( ~ ~ / X ~ ) z ( ~ ~ ~ * / ~ X ~ ~  (3.1) 

where A’ = 1/288nd3. In obtaining the enhanced nucleation rate on dislocations we 
have assumed the pre-exponential factor to be the same as that of the homogeneous 
nucleation rate. Although this simplification is incorrect, it is found that large changes 
in the pre-exponential factor will have Little effect on the final results. Later on in the 
development we shall multiply the dislocation nucleation rate stated above by the 
dislocation density in order to account for the low concentration of nucleation sites. 
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3.2. Growth rate 
R. Gomez-Ramirez and G. M. Pound [22] hypothesized that the nucleation barrier 
W; isonly slightly shape-dependent and therefore thecritidshapecan be approximated 
by that of the family with the lowest nucleation barrier. They found that an ellipsoidal 
criticalnucleusgave reasonable resultsfor thecalculationof W:. We usetheuhypothesis 
for the calculation of gbwth rate and'assume an ellipsoidal nucleus with &I aspect ratio 
11 J 1.3 which is recovered from Cahn"s work with (I = 0.6. This aspect ratio is assumed 
to remain constant throughout the growth process. 

We assume a quasi-stationary chemical potential outside the growing particle so that 

Since the growing nodule is assumed to be elliptical in shape, we represent equation 
(3.2) in an ellipsoidal coordinate system and obtain the solution [23] 

G Sundar and J J Hoyt 

v2p = 0. (3.2) 

p(x,y,  z)  = mAAx + P B A y  + yCnz + D (3.3) 
where 

A A  = I(1 - eZ)/e3]{tlnI(1 + k ) / ( l  - k)] - i} 
BA = CA = [(l - ez)/2e3]{C/(l - Cz) - tln[(l + k)/Q - C)]} 

and 

c = [(a2 - p)/((I* + n ) p .  

Here A is the positive root of 

anda, band e are the semimajor axes, semiknor axes and the eccentricity of theellipsoid 
respectively. 

At regions remote from the nodule, A tends to infinity and AA, BA and CA tend 
to zero. Therefore p(x = m, y = m, z = m) = D = p(m), where p(m) is the chemical 
potential of the m a t h .  Applying this as a boundary condition on equation (3.3), we 
have 

x'/(a' + A )  + y 2 / ( b 2  + A )  + zZ/(bZ + I )  = 1 

p - p(m) = wAAx t BEny  + yCAr. (3.4) 
At this point we dl1 not attempt to evaluate each constant (I, /3 and y appearing in 

the above equation, but instead adopt the following simplifying procedure. We will state 
the boundary condition at one point on the surface of the nodule (namely x = 0, y = b ,  
z = 0) ,  obtain the flux of solute at this point by evaluating the derivative of the resulting 
concentration field, assume that the particle maintains a constant aspect ratio over all 
time and, finally, balance fluxes to obtain a growth rate. 

According to the Gibb*Thomson relation, the increase in chemical potential of 
soluteat acurvedsurfaceisproportional tothesumofthereciprocalsofthe two principal 
radii, ,RI and R,, at any point on the surface. From the definition of principal radii one 
obtains RI = 6 and R ,  = qZb for the ellipsoidal particle at the surface position x = 0, 
y = b, z = 0. Therefore, following Marder [24], the appropriate boundary condition 
becomes 

p(0 ,  b ,  0) = p ( y  = m) + [o(l - CA)/(AC6)](1 + l/q2). ' 
(3.5) 

When evaluating the growth rate of a precipitate located on a dislocation line, a 
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complication arises in that the solute may be transported to the surface either from the 
bulkmaterialor, more rapidly, along the dislocationcore region. The two contributions 
to the growth rate and the resulting effect on the asymptotic mean-field coarsening 
behaviour have been discussed by Hoyt [B]. In the present work, the flux contribution 
from the dislocation core will be neglected. This assumption is reasonable in that we are 
ultimately interested in the supersaturation of the entire matrix and the supersaturation 
contained in the dislocation lines represents a small fraction of the total. 

To obtain the growth rate the following equation is employed: 

dV/df = (SD/AC) (dc/dy),=b (3.6) 
where Vis the volume of the ellipsoid given by 

V= = &cab2 = 4nqb3 

and S is the surface area: 

S = 2nb2 + Zn(ab/e) sin-’ e = 2nb2[1 + (q / e )  sin-’ e] .  

In addition, to convert from the chemical potentials appearing in equation (3.5) to 
concentrations, the following approximations given by LS are used 

6 p  = (ap/ac,,)6c do = u/[(AC)’ Jp/aCA] 

where do is the capillary length. The final result for the growth rate becomes 

db/dt = (1.6D/b)[(&C/A.C) - (1.6dO/b)]. (3.7) 

Perhaps the most serious assumption used in the above analysis is the mean-field 
boundaryconditionp = p(m)atx, y, .z+ m. Theapproximationis reasonableforwidely 
separated particles, but as we shall see in the following section, the precipitates lying on 
dislocations are expected to be closely spaced, if not overlapping. Thus, use of the mean- 
field assumption is a bit inconsistent, but a more accurate mathematical description 
would be a difficult proposition. We anticipate that any errors in the growth rate derived 
above will not seriously affect the final results. 

3.3. Volumefmction 

As mentioned before, the derivation of the volume fraction centres around the problem 
of impingement. Although it is assumed in the LS model that the equilibrium volume 
fraction of precipitates is small, the number of heterogeneous dislocation sites is also 
very small. In addition, the number of heterogeneous sites decreases with time due to 
prior nucleationevents andthegrowthof pre-existingnodules. Thissitesaturationeffect 
can be accounted for via an extension of the analysis first proposed by Avrami [ Z O ] .  

In deriving an expression for the volume fraction as a function of time, it will be 
convenient to use a device used by Cahn [21] called the extended line fraction Z,. In 
evaluating Z ,  it is assumed that new particles can be nucleated at sites already occupied 
by other precipitates and the nodules can grow unimpeded through other nodules. Thus 
Z, can approach infinity whereas the actual h e  length cannot be greater than unity. The 
extended line fraction Z,  is the sum of all lengths of an imaginary line parallel to the 
dislocation which are intercepted by the nodules divided by the length of the line. If 
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these interceptions are randomly distributed on the line, then the actual line fraction is 
given by 
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Z = 1 - exp(-Ze). 
If ris the distance between the assumed straight dislocation and the imaginary line, then 
the volume occupied by the nodules originating from a unit length of the dislocation is 

V = [ 2nrZ dr. 

Randomly distributing the dislocations in a unit volume will give us 

z d  = 1 - exp(-LV) (3.8) 
where L is the dislocation density and z d  the volume fraction. 

We employ the same technique for calculating Z, for an elliptical nodule with an 
aspect ratio q, semimajor axes a and semiminor axes b. If r is the distance between the 
dislocation and the imaginary l i e ,  then the length of line segment AB intersecting the 
nodule is: 

AB = (2/-) V F = 7  

where e = 2.6 for q = 1.3. 

velocity given by equation (3.7). Therefore, 
The point on the surface of the ellipsoid given by x = 0, y = b, z = 0 has an outward 

Following Cahn [21] we obtain, for the extended length fraction starting at a time 
between z and z + dz, the expression 

I,' [ ( jO7' $ d f)' - r'] ' I2 Jd dz' if b(r) > r 
if b(r)  < r 

On scaling with definitions given in equations (2.3) and (2.4), the above equations 
become 

where 

Jd = 3~''~(1 f y)3'5s eXp(-o.2/y2). 
Assuming random distribution of dislocations, the total extended length fraction Z 
becomes 

2 = 1 - exp(-Z,) 

and 
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where Visthe volume of the second phase growing per unit length of the dislocation and 
6(z) is the sue of the nodule in the direction of the semiminor axes at any time t. If L is 
the dislocation density and d is the reduced dislocation density, then using the reduced 
parameter for length, see equation (2.4), we have 

d = L(25/xO)*. 

Substituting the aboie expressing in equation (3.8), we have 

Zd = 1 - exp(-dV') (3.10) 

We are now in a position to state the final rate equations for nucleation and growth 
where V' is the scaled version of the expression for V. 

in the presence of dislocations: 

where y, = xl/xo. Equation (3.12) has a non-integrable singularity since at t = 0, 
y = y, and Zd = 0. Therefore, in order to remove this singularity, we consider the only 
possible choice for p, which would bep( t  = 0) = a + l/yl. 

4. Results and discussion 

Solutions to equations (3.11) and (3.12) were obtained by using a standard fourth-order 
Runge-Kutta forward integration technique. All calculations on equations (3.11) and 
(3.12) were performed with a = 0.2, xo = 1.0 and q as defined elsewhere in the present 
work. Variations ofy versus z were plotted for different values of initial supersaturation 
y, rangingfiomextremelylowvalues (y, = 0.20) tosigni6cantlylargevalues(yl - 0.50). 
The effects of presence of dislocations on the nucleation and growth phenomenon were 
measured by plotting the same graphs for different dislocation densities. 

In the computations we have attempted to use parameters consistent with the Al- 
Zn results of Simon et al. The reduced density parameter dis related to the real density 
L by the expression 

d = L(Z~/X~)~. 

The correlation length c a s  quoted by Simon et a1 [13] was of the order of lo-' cm which 
yields a value of d = for L - lo8 cm per cm3. This value of L is typical for a well 
annealed alloy. The two valuesof dconsidered in the present study are d = 5 X and 
d = 5 x respectively. 

Figure 1 shows the supersaturation as a function of time for an initial supersaturation 
of 0.2. At y, = 0.2, that is, initial activation energies of the order of 20 kT or greater, y 
remains essentially unchanged in the initial stages of nucleation and growth. Here, the 
nucleation rates, both on the dislocations and in the bulk, are too low to produce 
sufficient amounts of transformation products that could have any appreciable effect on 
the surrounding supersaturated material. The systemcontinues to behave in this fashion 
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Flgun? 1. Computed relative supersaturation as a function of reduced time r for yI = 0.2 
Reduced dislocation densities are indicated in the insert. 
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Figure 2. Scaled mean radiusp as a function of time r for y, = 0.2 

until a relatively small number of nodules become large enough to deplete the super- 
saturation significantly. The supersaturation y, therefore, undergoes a downward tran- 
sient. For yl  = 0.2, this decrease happens in the vicinity of z = lo4 for the cased = 0. In 
the presence of dislocations, however, this onset takes place sooner owing to the effect 
of dislocation catalytic nucleation. 

Figure 2isalog-logplot ofthe dimensionless average radiuspofthenodulesgrowing 
in the bulk. For the LS case (d = 0), the particlesundergo aperiod of free growth at early 
times. That is, the few nuclei present can acquire solute from the supersaturated matrix 
without competing with other particles. This mechanism of growth is reflected in the 
curve of figure 2 as a slope of p versus z which isgreater than f .  At late times, when the 
particles compete with one another for the available solute, the LifshitzSlyozov 2'13 
result is seen. In the presence of dislocations, supersaturation duninishes at a faster rate 
due to the catalytic nucleation effect. As a result the period of free growth is greatly 
reduced. 
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FSgureA Computedrelativesupenaturationyasafunctionoftimerforthecasey, = 0.24. 

Figure4.Scaledradiuspasafunctioooftime eforthecasey, = O B  

The kinetic behaviour for the average radius and the supersaturation at a somewhat 
higher initial supersaturation y1 = 0.24 is shown in figures 3 and 4. The important point 
to noteconcerning the higher initial supersaturation is that although the supersaturation 
again decreases faster in the dislocation case, the effect is not as pronounced as in 
the y1 = 0.2 case. The reason for the diminished dislocation effect at higher initial 
supersaturations is that the bulk nucleation rate increases faster with supersaturation 
thandoes the dislocation nucleation rate. Inaddition, even thoughdislocationnucleation 
has increased at y1 = 0.24, the number of sites available has remained the same and the 
Avrami equation for Z, comes into play. 

A comparison of the effects of dislocations on the initial supersaturation is shown in 
figure 5, which is a log-log plot of the half-completion time zlp (that i s y ( ~ ~ / ~ )  = y&i) 
versusy,. Itisevident that,atinitiaIsupersaturationsofy, greaterthan0.30,thepresence 
of dislocations has practically no effect on the half-completion time tln. Also shown in 
figure 5 are the data of Simon et a l [13 ] .  It can be seen that, although the presence of 
dislocations can have a large effect on the half-completion time at small values of y l ,  it 
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isdoubtful that heterogeneousnucleationcanexplain thedatapoint ofSimonetalwhich 
is located nearly on the classical theory curve. Thus at this point it is unclear why the 
model and experiment disagree and therefore we are conducting further experiments 
on the AI-Zn system. 

5. Conclusions 

An extension of the LangerSchwartz model of nucleation and growth has been devel- 
oped which accounts for the presence of dislocations in an alloy system. The many 
assumptions made during the analysis suggest that the conclusions drawn will be quali- 
tative. Nevertheless, it,is clear that $e overall phase separation kinetics are greatly 
enhanced in the presence of dislocations at low supersaturations. This is seen in terms 
of the decrease by nearly an order of magnitude in the half-completion time at reduced 
initial supersaturations of the order of 0.2. On the other hand, the kinetic behaviour is 
virtually unchanged for higher initial supersaturations. 

In addition, it is unlikely that the discrepancy between the LS model and AI-Zn data 
reported by Simon et a1 can be attributed to heterogeneous nucleation events. 
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